Author | Message | Time |
---|---|---|
Raven | Acos(lnx) + Bsin(lnx) = y, where A and B are constants. Prove: (x^2)y'' + (xy)' + y = 0. I hate having to figure out how to go about these proofs. Thanks. :) | May 25, 2004, 8:04 PM |
Adron | [quote author=Raven link=board=36;threadid=6956;start=0#msg61812 date=1085515471] Acos(lnx) + Bsin(lnx) = y, where A and B are constants. Prove: (x^2)y'' + (xy)' + y = 0. I hate having to figure out how to go about these proofs. Thanks. :) [/quote] Looks easy, all you need to do is take the derivative of a few things? An attempt: y = Acos(lnx) + Bsin(lnx) y' = (-Asin(lnx) + Bcos(lnx))/x y'' = (-Acos(lnx) - Bsin(lnx) + Asin(lnx) - Bcos(lnx))/ x^2 (xy)' = xy' + y = -Asin(lnx) + Bcos(lnx) + Acos(lnx) + Bsin(lnx) (x^2)y'' + xy' + y = 0 : (x^2)((-Acos(lnx) - Bsin(lnx) + Asin(lnx) - Bcos(lnx))/ x^2) + x(-Asin(lnx) + Bcos(lnx))/x + Acos(lnx) + Bsin(lnx) = - Acos(lnx) - Bsin(lnx) + Asin(lnx) - Bcos(lnx) - Asin(lnx) + Bcos(lnx) + Acos(lnx) + Bsin(lnx) = 0 (x^2)y'' + (xy)' + y = 0 : (false) (x^2)y'' + (xy)' + y = (x^2)y'' + xy' + y + y = y (x^2)((-Acos(lnx) - Bsin(lnx) + Asin(lnx) - Bcos(lnx))/ x^2) - Asin(lnx) + Bcos(lnx) + Acos(lnx) + Bsin(lnx) + Acos(lnx) + Bsin(lnx) = - Acos(lnx) - Bsin(lnx) + Asin(lnx) - Bcos(lnx) - Asin(lnx) + Bcos(lnx) + Acos(lnx) + Bsin(lnx) + Acos(lnx) + Bsin(lnx) = Acos(lnx) + Bsin(lnx) = y | May 25, 2004, 9:12 PM |
Raven | Yeah, that looks about accurate. I'll try and go over it later just incase. Thanks alot, you saved me what'd likely be a headache. :) | May 26, 2004, 4:46 AM |